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Technique for Very High Order Nonlinear Simulation and Validation

Roger W. Dyson

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Finding the sources of sound in large nonlinear fields via direct simulation currently requires
excessive computational cost. This paper describes a simple technique for efficiently solving the
multidimensional nonlincar Euler equations that significantly reduces this cost and demonstrates
a useful approach for validating high order nonlinear methods. Up to 15 th order accuracy in space

and time methods were compared and it is shown that an algorithm with a fixed design accuracy
approaches its maximal utility and then its usefulness exponcntially decays unless higher accuracy
is used. It is conchtded that at least a 7 th order method is required to citiciently propagate a

harmonic wave using the nonlinear Euter equations to a distance of 5 wavelengths while maintaining
an ovcrall error tolerance that is low enough to capture both the mean flow and the acoustics.

1. Introduction

It is well known that aeroacoustic computations require high order numerical schemes to

emciently capture the nmltiscale l)henomena occurring over a relatively large time interval.

But the question of how high has not been answered because of a number of reasons, such

as the following:

• Acoustics may be mathematically solved in a number of ways such as via acoustic

analogies _, direct simulations 2, and perturbation techniques 3

• Commonly used numerical approaches such as Compact 4 Essentially Non-Oscillatory 5

Dispersion Relation Preserving 6 and Gaterkin 7 schemes are difficult to extend to

very high order.

• The numerical requirements vary considerably due to the wide variety of acoustical

phenomena which include linear propagation and scattering, inviscid gust interactions

with objects, receptivity effects, and turbulent noise generation.

Since most Computational Aeroacoustics (CAA) techniques have a fixed design accuracy

and resolution, they offer linfited opportunities for exploring the effects of design accuracy on

the simulation. Instead, an arbitrary accuracy Modified Expansion Solution Approximation
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(MESA) technique 8,9,10 is used here. This method was recently inq)lemented 1] in a way

that greatly simplified its use and demonstrated the possibility of subgrid scale resolution

by including tile spatiM derivatives of tile primitive variables on tile grid and by using

very high design accuracies 12. For these reas0ns_ t}ie MESA scheme is extended here to

the nonlinear Euler equations so that the design accuracy required for an efficient direct

numerical acoustical simulation can be quantified.

In addition, as tile accuracy requirements increase so does the complexity of the non-

linear simulator. Many subtle errors can be introduced, particularly for nonlinear systems

which have few analytical solutions available for testing with. Therefore, the Method of

Manufactured Solutions 13 is applied here and found to be a useful tool for developing and

testing very high order methods on complex nonlinear systems.

2. Problem Description

The following form of the two-dimensional nonlinear Euler equations are used 1.1,_5.

Op cOp Op ( Ou Ov _
0--/+_,_+v_+P,/_+_ =0_ (2.1)

OpOpOp (O_Ov)

CO(pro,)
O(pu.___)+ O(pu 2 + p) + - Q3 (2.3)

Ox Oy

O(p_ 2 + p)0(32) + + - (2.4)
Ot Ox COy

This form does not explicitly use the energy primitive variable since the equation of state

was used to eliminate it, resulting in only four unknown variables: p, p, u, v, which are the

density, static pressure, x-velocity, and y-velocity respectively. Tile ratio of specific heats is

defined as 3' = £a = 1.4.
CI_

Ordinarily, tile source terms (Q1, Q2, Qa, Q4) are zero. But, for testing purposes, these

terms will be modified so that the following analytical solution is defined:

p(.% y, t) = al cos(kx/rX) cos(kylry) cos(ktrrt) + c I (2.5)

u(x, y, t) = a2 cos(kxTrx) cos(kyrry) cos(ktTrt) + c2 (2.6)

v(x, y, t) = as cos(k_Trx) cos(kyrry) cos(kt_rt) + ca (2.7)

p(x, y, t) = a4 cos(kxTrx) cos(kyTry) cos(ktTrt) + c4 (2.8)

This simple harmonic solution is used to test the resolution of each method as their

design accuracy is modified and it enables comparisons to be made with previous linearized

results which also used this test 12. Tile source terms, Qi, are then found using computer

algebra and the resulting code is verified using the Method of Manufactured Solutions 16,17

Tile source terms corresponding to this analytical solution are shown in Appendix A.

It is important to insure tile density and pressure variables, p(x, y, t) and p(x, y, t), are

greater than zero when choosing the free parameters, (ai and e4), because tile numerical

NASA/TM--2001-210985 2



approachwill otherwisebenumericallyunstabledueto excessiveroundofferrorfl'omdivision
andnmltiplicationbysmallnumbers.ThelinearizedEulerequationswerepreviouslysolw_d
with a linearMESAscheme12whichdid not havethissourceof instability.However,since
p and p are not perturbation quantities in Eqs. (2.t-2.4), they will never be negative in

practical applications and therefore this instability is only of concern while imposing the

artificial solution, Eq. (2.5).

3. Numerical Approach

Tile numerical approach described here will produce single step, explicit, O = N(s + 1) - 1

(Vinteger s >_ O andN >_ 1) order of accuracy in space and time methods for the solution

of the two-dimensional nonlinear Euler equations using a N x N stencil containing the

prinfitive variables and their mixed spatial derivatives, o
OxO..._OyO...s •

The primitive variables and their spatial derivatives are advanced in time on a staggered

grid 12 such that time advancement is always performed in the center of each stencil by:

o"+bp(x'y'At) = _ 1C_b_At_' (3.9)
Ox"y b k! ' '"

k=O

Oxay b k! ' ' _
k=O

= Zc ; zxtk (3.11)
Oxay b k! ' '"

k=O

oa+bp(x,Y, At) _ l r_PkI A÷k (3.12)
_" Y;_Xa_b 7- _ a,b,k,_, _

k=O "

where

y oa+b+kf(x, y, t = 0) (3.13)
C_,b, _. = Ox_ybtk

The mixed space-time (C[,b,k) derivatives are found by differentiating the governing

equations in space and time using the Cauchy-Kowalewski technique is. The difficulty in

doing this with nonlinear systems is in differentiating products and this was cited in the

past as a reason for not, using it 19. Fortunately, it can in fact be performed systematically

using a nmltidimensional extension of the Leibniz rule 2o.

oa+b+k f (x, y, t)g(x, y, t)

Ox_ybt k

b k b O(a-i)+(b-J)+(k-c) f (x, y, t) oi+j+Cg( x, y, t) ]

Ox a-i Oyb- j Otk- c Ox iOyJ Otc J (3.14)

By repeatedly applying the Leibniz rule to the governing equations, the explicit forms of
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the coefficients,C f
a,b,k '

DO k= I,0; DO b=O,O; DO a=O,O

are found. These coemcients are evaluated with the following loop:

_=0 i j cj=0 c=0

C_,O_,v,t) pp(x,v,_) , ,, . . ,..

C,'(x,y,O ,_,',(:r,y,O C(,(_'_J) .. . C,,(_-,y.O1(a-i,b-j,(k-1)-c'Ji,j+l, c "-_ , - , -j,(k--1)--c i,j+l,c J

QI
-_-C¢_,b,k_ 1

_--o i j cj=0 c=O

1)--C [+[,j,t "31-I (a_i,b_j,(_,_l)_t1,./i__l,j,c m

C,_,(z,_,,_)" C,(Z¢,_) ,.,,CpOr._.,) r,_.,(x,y.t)]
(a-i,b-j,(k-1)-c i,j+l,c -t- r (a_i,b_j,(k_l)_c'Ji,j+l,c ]

Q._
-[- Ca,b,k- l

C,p(x,y,O'_(:_,y,t)
,b,k

b _ £ £ £ a b k-1 i I jl c1[(,,)(j1)( )
il =0 j_. _-0 ci =0 i2=0 j._=O c._=O Cl c2

(cZ._:_,___,,__,__o:c'_:_2_j_,_:__c:._,;?,2+2c_(x.'_':_.,.... c_(_2__.,,__c:(:_;.L,+
a--_ - ,o--?. ,l_r-- 1)--el

• '2,.r, ,c:_ r'r (x'_"t) C'_(_:'Y't) CV(:_¢'O

_-., -- C_+l,b,k_ 1_a-i! ,b-j_ ,(k- 1 )- c_ -j2 ,c:

q_C Q3
a,b,k- 1

C,O(:_,.u.Ov(z,y,O
,b,k

a

- EEEEE _,
i_ ---0 j_ =0 c_ =0 i.>----0 j_ :-:0 c_=O

b k - 1 il j_

C"(x¢,_) C_,(x,y,O ,.-,,_,(z,_,,t)
a-i=+l,b-j,,(k-I)-c,_ i,-i_,j,-j._,c:-c2"-'i,_,j._,c._ + C:(-x'Y_)_j:,(k_l)_cl C_iY_)l,j__j_,c:_c_ C_'_(_;Yc' _) +

C:(-_':Y_)-yl,(k_l)_c] Ci:(x--}Y:_l_j._,cz_c2 C_'_'YlJ_,c.2 ) ] -- cPa,b+ i,k_l

+c_,__,
END DO; END DO

Perform Conversion Eq. (3.16)

END DO
(3.15)
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DO a,b (a + b = 0, 1,...,20) and(O <_ a,b < O)

Co_.o_o _,_,_- -
, , o,o,c_ \i-O j-O

a-1 k /

F_E t "i-O c-O i

b-lk(bZZ 5
j-0 c-0

a b k CO t_±
c-o i j c a-i'b-j'k-c_Ji'j'cl

C Ca-i,O,k-cCi'b,c +

C O'b-j'k-cWa'j'c +

C[_' b,k =

,,lb1()( )i-o j-o i j Cta-i,b-J 'OCi'j'k

c--O C O'O'k--c_a"b'e]

o,0,u ' ' o,o.o \i--0 j-0

a--I k (
"-- c--0 i

b-lk (bZZ j
j--O c--O

+

)()()Z a b k (To f,v a_
c-o i j c "Ja-i,b-j,k-c"Ji,j'c[

C _a-i'O'k-c_i'b'c -}-

C C;'b-j'k-cCa'j'c +

i--O j-O i j Wa-i'b-j,OWi'j'k

_-_o c C°,°, k-_ C_''b'_

+

END DO (3.16)

After each loop of the k index in Eq. (3.15), the following momentum coefficients are
known:

CP,_b,k with (a,b): (a,b=0,1,2,...,O)

cPa_b,# with (a,b):(a,b=0,1,2,...,O) (3.17)

But the C_,b,k and C_',b,k coefficients are required to evaluate the coefficients, C_..o,o...,o,+1
at the next k + 1 loop. By repeatedly applying the Leibniz' rule to Eq. (3.17) an explicit

expression for the C,_,b,k and CV_,b,kcoefficients is found, Eq. (3.16), in terms of already

known variables. Note, however, that these coefficients must be evaluated in the sequence
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of increasingderivativeorder (i.e.,Find C_,,b,_,and Ci, b,_. in the order (a,b):(a+b=0,1,..., 2

O). By apl)tying this conversion step once for each k-loop increment in Eq. (3.15), we can

efficiently continue increasing the index k until all the coefficients, Eq (3.13), are found.

4. Determining the Spatial Derivatives

The procedure described in the last section will advance the nonlinear Euler equations in

time at (x,y) with arbitrary accuracy if all the spatial derivatives:

cf, b,0V(,,, b) : a, b = 0, 1,..., O

are known at (x, y). However, only the spatial derivatives:

C fb,oV(a,b) : a,b = O, 1,...,s

are available on each grid point, (xi,y)). Therefore, the higher order spatial derivatives,

(a, b _> s + 1), need to be interpolated. In addition, since time advancement is performed

using a staggered grid, both the known derivatives on the grid and the higher order unknown

derivatives need to be interpolated to the stencil center, (x = 0, y = 0). A simple method

for accomplishing this on a N = 2 size stencil was shown previously 12. It is completely

generalized here to include any size stencil (N > 1) using any number of spatial derivatives,

s _> 0, and at any location such as on solid boundaries which require one-sided stencils.

A one-dlmensional osculating spatial interpolant using the primitive variables and their

spatial derivatives at the grid points, (x0, xl,..., XN-,), is:

N-1 k(s+l)+s
CL_ _(_)o,o,o = _ _--_

k=O i=k(s+l)
k-1 ) s+iQi,i(j__o(X -- xj) (X -- Xk)i-k(s+l)",_

where the Qi,i are computed as follows:

(4.18)

DO k = O,N- 1; DO i = k(s + 1),k(s + 1) + s;

DO j = O,i - k(s + 1)

Qi,j = (1/j!)_

END DO; END DO; END DO

(4.19)

DOm=I,N-1; DOk=I,N-m

DO i = (s + l)(m + k - 1),(k + m)_ + m + k- 1

DO j = i+ 1 - (s + 1)k,i + s + 1 - k(s + 1) (4.20)
(Qi,.i- i -Q_-:,j-1 )

Qi,j = max

END DO; END DO; END DO; END DO

The real value of this algebraic form is the simplicity of interpolating the derivatives;

Ordinarily, by the product rule of differentiation, each differentiation of Eq (4.18), would

result in an equation that grew in size by a factor of N, up to N ° terms, and would render
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very high ordermethodsintractable. Instead,the followingexplicit algebraicform avoids
this issue:

N-1 k(s+l)+s

cf,,(x) (4.2L),0,0= E E
k.-0 i=k(s+l)

where tile function Z_,i,_. is independent of space and time and can be computed simply as
follows:

DO a=O,(N- l)(_'+l)+s

DO i = O, s
a--1

z,,,_,o= (:,,- *o)(;-a) 1-[(i - _)
c--O

END DO

END DO

DO (, = O,(N - 1)(, + 1)+,
DOk=I,N-1

DO i= /c(s ÷ l),k(s ÷ l) ÷ s

Z,_,i,_o= (4.22)

zz... z
tO--0 r! =0 rk_:=0 \_'=0 L\ /A

{ 1

(a-E___-o I rp)-I (rk_i_l) k-1 (r/_-1-1) )
[*+ 1- _01 1-[ [i- k(._+ l) - _k]I] II [._+ l - _e?

el¢=0 fl=l e_=0

• II
eo=O

END DO

END DO

END DO

This technique is an extension of Hermitian divided-difference interpolation 21 and it

was derived by repeatedly applying the generalized Leibniz' rule in Eq. (3.14). For a fixed

stencil size on a uniform grid, Eq. (4.22) needs to be computed only once since it is constant

for all space and time. This results in significant computational savings since only the Qi,i

variables require further evaluation as the stencil location changes, but even these stay

constant as higher order derivatives are evaluated using Eq. (4.21) on the same stencil.

In addition, higher order interpolants may reuse the information from lower order inter-

polants to efficiently and adaptively increase local accuracy:

(X-1)(s+l)+s

CfN (_) ,.-,IN-_ (x) (4.23),0,0 = Vla,O,O ---- E Qi,iZa,i, k

i=(N-1)(,+1)

Multidimensional spatial interpolations are efficiently accomplished using the tensor

product of a series of one-dimensional interpolants 11a2
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5. Explicit forms for the Analytic Solution and its Source Terms

Coml)uter algebra can calculate tile derivatives of tile analytical solution, Eq. (2.5), and
Q,

the source terms, Ca,b,k_ l in Eq. (3.15), and then automatically write tile necessary FOR-

TRAN code 23,13. However, for very high order algorMtms the code becomes too large and

complicated for most compilers and therefore it is necessary to develop an explicit form of

those expressions.

First define the Lagrangian operator as:

(l-IT_-o1 .rv[od(a, 4) - i) (I_a_,+l glod(a, 4) - i)
L,,,, (5.24)

And then define:

CCO._(¢z)
d =

Cdin(¢ z) =

(Ld,o eos(¢z) -- Ld,1 sin(¢z) -- Ld.2 cos(¢z) + Ld,a sin(¢z))¢ d (5.25)

(nd,0 sin(¢z) + nd,1 cos(¢z) -- nd,2 sin(¢z) -- Ld,a cos(¢z))¢ d (5.26)

where ¢ is any constant, d = a, b, or, k, and z = kxrrx, kyrry, or, ktTrt.

The derivatives of the assumed analytical solution, Eq. (2.5), may then be written as:

c::;:z'
'aanal

,b,k

C (L'Lra r_ d t

,b,k

Ca pana!

,b,k

,- _a ,- _b_- _k--,cos(k=*rz)_cos(k utry)_cos(k_ rrt)
= 5,_05b05_0cl + alttq-rr) t_cyrr) (_,rr) wa t-.b wk (5.27)

,- ,a,- ,b,- ,k.-,cos(k=_x).-,co._(ku_y).-,cos(_:_=0 (5.28)--_ (_aOSbOSkOC2 -'[- a2itCxTr) (I,CyTr) (I, gtTr ) (Ja (_b (Jk

,- ,a,- ,b,- ,k--,cos(k_ _z) .-,cos(k_ry) ..,cos(kt _t) (5.29)= 5aOSbOSkOCa+ aa(rcxTr) _yrr) t_trr) w_ _b %.

,- ,a,- ,b,- ,k_cos(k_rrz),-,cos(k_rrU),-,cos(k,._O (5.30)= 5aOabOSkOe 4 + a4(tcxrr) (tcyrr) ttctTr) t_a t_ b t_ k

where ai0 is the Kronecker delta.

Tile source terms involve products of transcendental functions which may be differenti-

ated explicitly using the Leibniz' rule, Eq. (3.14), and are given by:

cdtrigl (¢I z)trig2 (¢2 z)

c dtrigI (¢1 Z )trig2 (¢._z )trig3 ( ¢a z )

d()d trig=(¢'_z) trig.2(¢.2z)= C'd_ i C_
i=0 i

= Z Z d i i_trig1(¢Iz)ctrig2(¢2z)ctriga(¢az )

i--0 i2=0 i i2 "_d-i i-J2 i2

where trigi is either the cos or sin function and ¢i is some constant.

Tile explicit forms of the derivatives of the source terms using these definitions are listed

in Appendix A. In this way, only a few pages of FORTRAN code are required to compute

all the necessary very high order derivatives of the analytical solution and source terms.

The Method of Manufactured solutions permits any analytical solution to be imposed,

but note that not all solutions and their induced source terms will be explicitly differentiable

as they are here. Therefore, additional care is required in the selection of analytical solutions

for testing very high order methods for otherwise the resulting code will become unwieldy.

NASA]TM--2001-210985 8



6. Stability

Derivinganalyticalstability conditionsfor the nonlinearEuler equationsis generallydiffi-
cult 24andnecessarystability conditions(but generallynot suffmient)aretypicallyderived
by linearizingthe conservativegoverningequationsusingtheir constantcoefficientquasi-
linear form:

OU A OU B OU = o (6.31)
0---(+ Ox + Oy

where A and B are the flux Jacobians which are held constant for a yon Neumann stabil-

ity analysis. However, in this work, the energy equation is not in conservation form and

therefore this form of analysis is not available.

Instead, engineering rules of thumb were applied here and tested numerically. Let the

Courant number be defined by 25.

cr = + At (6.32)

where Cx = max([lull + c), which is tile magnitude of tile greatest wave velocity in the x-

direction over the entire grid (and similarly for cy in the y direction). In addition, for most

single-step explicit nmnerical formulations in two-dimensions the Courant number nmst be

a _< 0.5 to maintain numerical stability 26

Since the Cauchy-Kowalewski procedure is essentially a Taylor series method, a simple

model problem may be used to demonstrate numerical stability limits. For example 27, if

the test equation (for)_ < 0):

!

y = ,_y (6.33)

is time advanced using an n th order Taylor series in time, it will be stable if the following

series (which is generally convergent as n.--+ ec) is satisfied:

(1) (I)I11+Ate+ At2a 2+...+ _ At'_'_[[< 1 (6.34)

At low accuracy the maximum stable time step will vary, but it soon approaches a fixed

value as the accuracy increases. In general, however, high-order explicit schemes usually

have more severe stability restrictions on At 2s and this is evident in Table 3.

The following time step size was found to provide numerically stable solutions for up to

15 th order accuracy on a uniform Cartesian grid:

(7

/,t = (6.35)

where the speed of sound is defined by :

/ p(x,y,t) _
c= v (6.36)

NASA/TM--2001.-210985 9



Numericalinstabilitydid occurwhenthesolutionwasunder-resolvedasshownin Table
6. Here,the 3ra ordermethodbecameunstableby the time t = 799.98, but the 5th, 7 th,

and 9 lh order methods were stable to at least 50 wavelengths of propagation. This suggests

that nonlinear aliasing effects can be delayed significantly by increasing the accuracy of the

simulation. Similar results are seen in Table 3.

Ill practical applications, it will be necessary to filter out. the inevitable unresolved high

frequencies. However, it is encouraging to observe that despite the very low numerical

dissipation, filters were not required in this work.

7. Numerical Results

A comparison of the effects of design accuracy on the efficiency and resolution of the overall

simulation wa._ performed by using a 2 x 2 stencil to produce 28 + 1 order schemes. These

schemes were used to propagate a single wavelength the following distances:

• A single time step as shown in Tables 1-2,

• Five wavelengths as shown in Tables 3-5,

• Fifty wavelengths as shown in Table 6.

The wavenumbers, amplitudes, and displacements defined in Eq. (2.5) were set to ki = 1,

ai = 1 and ci = 2, respectively, except in Table 6 which has ci = 10.

The expected error, Ys, of a method with design accuracy O = 28+ 1 can be extrapolated

using the data in Table 1 since the design accuracy determines the rate of error change as

the grid is refined. Starting with the known numerical error, es, in Table 1 with Xs = 2, the

following relationship:

_ es (7.37)
Ys (20(x__2))

Gridpoints
will provide the expected error at Xs = ILog2 IVavelength t" Figure 1 plots this equation.

Note that, due to computer roundoff, errors less than 10 -15 are only possible if quadruple

precision floating point numbers are available.

By solving for Xs in Eq. (7.37), it is possible to estimate the number of grid points

required to meet a particular error level Ys.

log 2 es - log 2 Ys
+ 2 (7.38)

Xs _--- O

The total number of grid points in a two-dimensional unit domain required for propagating

a single wavelength is then given by (2x_ + 1) 2. In addition, each grid point contains the

four prinfitive variables p, p, u, and v as well as their, 0 2, spatial derivatives resulting in a

total memory cost of:

costmemory = 4(28 + 1)2(2 z_ + 1) 2 (7.39)

NASAITM--2001-210985 10



Table 1. Numerical error at t=0.05, cr=0.25, 4 grid points per wavelength, 25 grid points

ci = 2, ai = 1,hi = 1, At = .05, Single Step

s Order Error, es Seconds/Grid Point, cs

1 3 1.57 10 -2 .0012

2 5 2.74 10 .4 .015

3 7 2.5410 .6 .1172

4 9 1.44 10 -8 .678

5 11 5.40 10 -11 3

6 13 1.42 10 -'3 11

7 15 1.78 10 -:_ 36

8 17 3.55 10 -16 95

9 19 roundoff 238

Table 2. Numerical error at t=0.05, a=0.5, 8 grid points per wavelength, 81 grid points

ci = 2,ai = 1,k_ = l,,_kt = .05, Single Step

s Order Error, es Seconds/Grid Point, cs

1 3 9.55 10 .4 .0016

2 5 3.95 10 -6 .0183

3 7 1.18 10 -s .1449

4 9 3.46 t0 -:_" .839

5 11 4.85 10 -t4 3.7

6 13 roundoff 13

Table 3. Numerical error at t=10, a=0.5, 4 grid points per wavelength, 25 grid points

ci = 2, ai = 1, k_ = 1, At = 2.4755 10 -2, 403 Steps, 5 wavelengths

s Order Error, e_ Total Seconds Seconds / Grid Point, cs

1 3 UNSTABLE UNSTABLE UNSTABLE

2 5 1.13 10-: 188.22 7

3 7 1.67 10 -3 1497.53 59

4 9 1.50 10 .5 8610.51 344

5 11 5.21 10 -6 39125.30 1565

6 13 UNSTABLE UNSTABLE UNSTABLE

Table 4. Numerical error at t=10, a=0.5, 8 grid points per wavelength, 81 grid points

ci = 2, ai = 1,k, = 1, At = 1.2377 10 -_, 807 Steps, 5 wavelengths

s Order Error, es Total Seconds Se_'onds / Grid Point, c_

1 3 1.4710 -U 166.90 2

2 5 3.95 10 .3 1392.09 17

3 7 9.73 10 .6 13328.04 164

4 9 1.64 10 -8 64907.56 801

5 ]1 1.45 10 -11 275939.53 3406

6 13 8.29 10 -13 999763.10 12342
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Table 5. Numerical error at t=10, 0=0.5, 16 grid points per wavelength, 289 grid points
ci : 2, ui = 1,k, = 1,_t = 6.18810 -3, 1615 Steps, 5 wavelengths

s Order Error, e_ Total Seconds Seconds /Grid Point, c_
1 3 1.48 10-1 935 3.2
2 5 2.54 10-4 10198 35
3 7 2.02 l0 -T 80299 277
4 9 1.29 10-_° 463537 1603

Table 6. Numerical error at t=100, _r=0.5, 8 grid points per wavelength, 81 grid points
ei = 10,ai = 1,k, = 1, At = 5.077 10-a, 19692 Steps, 50 wavelengths

s Order Error, es Total Seconds Seconds / Grid Point, c,
1 3 LLNSTABLE UXSTABLE UNSTABLE
2 5 1.05 10-a 65407 807
3 7 8.65 10-6 406932 5023
4 9 1.08 10-_ 1662013 20518

In addition, tile total time per grid point for each method, cs is shown in Table 1. However,

this time reflects the cost of a single time step. As ms increases (grid density) the maxinnml

stable time step will decrease for explicit methods (to maintain CFL condition). This is

accounted for by including the factor, 2 x*-2, for a total time cost of:

costtime = cs2Zs-2(2 z_ + 1) 2 (7./10)

Fig. 2 compares the relative costs of propagating a wavelength over a range of error toler-

ances, 10 -15 _< y, _< 10°.

Generally, a direct acoustical sinmlation requires an error of less than 10 -_ to capture

both the acoustical and mean flow phenomena. By this standard, the correct propagation of

a wave cannot be realistically achieved with a 3_a order method because of the exponential

growth in its cost as shown in Fig. 2. In addition, additional error will accumulate at each

time step and as Tables 3-5 indicate, a higher order method is required to propagate out to

a distance of 5 wavelengths. As Table 6 shows, at least 7 th order accuracy is required for

propagating 50 wavelengths with 8 grid points per wavelength.

8. Conclusions

The procedures shown here provide arbitrary accuracy in both space and time for nonlinear

Euler simulations using only a few pages of FORTRAN code. The usefulness of these

procedures hinges on the required accuracy of a given sinmlation.

If an accuracy of 10 -1° is required at time t = 0.05 to maintain a given error tolerance at

some future time, then Fig. 2 indicates the 3rd and 5th order methods could not accomplish

this because of exponential cost growth; Here, the optimal design accuracy is 11 th order.

tn addition, if the error tolerance is decreased to 10-15 because of the desire to run the

sinmlation over a larger time period, it is most optimal to use a 15_'h or higher order
method.

NASAITM--2001-210985 12
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These results show that a fixed order algorithm approaches its maximal utility and then

quickly becomes useless. The nonlinear implementation of the MESA schemes described

here can be used to adjust the design accuracy arbitrarily and it offers an opportunity for

solving the more demanding acoustical sinmlations in smooth flows.
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Appendix A

SourcestermsQ_, Q2, Q3, and Q4 in Eqs. (2.1, 2.2,

are defined below using the definitions in section 5:
2.3, 2.4) and their explicit derivatives

a a, k _rk • C c°s(kt nt)_/-_cos(k_ n'y) _/-_cos(kx_-x) sin(kz _rx)
2 ",_ "x xyr k "% _'a

2_,2_ t_ --L r-,cos(ktnt)_F_cos(ku_rY)2r_COs(k_rx)sin(k_rx )
'_2 bl r_x n _Vxyt t_ k "J b tJa

4a_ a_ c_ kz T_kx_t C_ °s(kt _-t)_c2OS(k_ _y): CaCOS(G _rx)sin(k_ _'x) _

.... 21_ _I,. f'_c°s(ktrct)3f_c°s(kv_rY) a cos(kx_rx) cos(kzr_x)sJn(kx_rx)
t+ i"_2r_x ,, r_xyt _" k _ b Ca
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a,c_c.,k 7rJv .¢_c°s(ktm)_c°s(kz_x)/_sin(kv_Y)
'* "_ 'o y ,xyrt/k tJ u tjb __

I. " .--,cos(ktrrt)-.--,cos(k.rrx) .._,cos{k.,rcy)sin(kvrry )
2a2a'3(q t_yzr_xytt, k t_,_ b b , - _

• . cos kt _rt) 2F, cos(kz zrx) 2 f_cos(kv :,ry) sin(k v _ry)
2alar3(2kyTrkxytC_, ( "-"a _b --

, cos(ktTrt _
2ala2(akvTrk:rytC'_2 ) ccos(t'_X)2CbOS(k_y)sin(l,._u)

3a j. a2a3ky.rrkxytC2°S( k' _t)3Cc°s( k_z)3c2os(_',j _y) cos(J,°v_ry) sin(1,'_ry)

Q4 [c_7rk . ¢_cos('k. rrx) ,.-,cos(k v _ry5_sin (k, rrt)
C_,b,k = --a3cl r- xyr_a _b _"tk --

a . __ ¢-,cos(kzrrx)pcos(kvTry)z-_in(ktTrt )
1(:3 _:t J_r_xyt tJa _ b C,'L_ --

2a _ *. --_ _cos(k_ 7rx) 2 (_TCOS(kun.y)2 ¢_cos(ktwt) sin(kt rrt)
.] U_3tirt ti Exytt_ a "_b t_ k --

(1 C C k 7r]i" cC°s(ktnt)f'c°s(kvlry)_sin(kz 7rx)
_3 '1 2 x 'xyt k tJb t_a --

a2cl C3 kx 751_'xyt C; °s(kt nt) (-,cos(k v Try)(_sin(kz _x)"_b w. --

a.p,,c,,b _I,. .g-ycos(ktrrt)pcos(kyrry) sin(kzrrx)
*_z d'_'x', ,_xyt_ k _b _ --

2a2a3cl ]% 7rk'xytC2 °s(ktm)2 c;°S(kv _rY): caCOS(k. _rx) sin(kx ,Tx) _

9o. 0 ..... t. _,t. .f'_c°s(kt_rt)_r-_cos(ku_ry) _ cos(kz_rx)sin kzrrx __" '* 'd"z".x,, '_xy t "_'k 'J b Ca ( )

2a_ a.,c..k- 7rk . cCOS(k_ _t) _,_cos(k v _rv)_ _cos(k_.x) sin(k_ _z)
• _ o x Xyt k t_" b t-_tt

3a.a_,_..t. ,_t. -(wc°s(kt_rt)3f-'c°s(kvrrY)3pc°s(kzrrx)cos(k.zrx sin(kznx)
z"3'_x .... xyt _l k _'_ b t_ a ) --

- ['-,¢os(kt rr_').--,cos(kz nx) _sin(k ny _
a4 _y 7r_'xyt _,to _,a _ c. b v )

2a c c k 7rk _cos(kt_rt)f_cos(kzwx)f, sln(kvrry)
3 4 3 y xyttJ k t_ a L, b

a_ c_ k.. 7rk .... c.COS(_t,rt) f_cos(k_ _rx) f, sin(kv,_)
o v ._yt k '.-/o _b --

2a_c_ k- 7rk .... _cos(k_ _rt) _,,_cos(k_ _rx) _pcos(k v _ry) sin(k_ry)
"l y *Y" -- If t'_a "-Jb

,, ...... ,, l_ _'b (Tcos(kt nt) _ (-,cos(k_ nx) 2 _cos(k v _ry) sln(k v try)
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